Reg. No.	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JUNE 2017

Course Code: EC206

Course Name: COMPUTER ORGANISATION (EC)

Max. Marks: 100 Duration: 3 Hours

PART A

Question No.1 is compulsory. Answer either Question No. 2 or Question No. 3.

- 1. (a) Illustrate the basic functional units of a digital computer and list the important functions of each unit. (4)
 - (b) Explain briefly the principle of carry look-ahead addition. Draw the circuit diagram of 4 bit carry look-ahead adder with proper design. (7)
 - (c) With the help of suitable examples, differentiate between R-type and I-type instructions in MIPS machine language. (4)
- 2. (a) Illustrate the IEEE standard format for single precision floating point numbers.(2)
 - (b) Compute the delay of a 64-bit carry prefix adder, assuming that each 2-input gate delay is 200 ps. (4)
 - (c) With a suitable circuit arrangement, explain n-bit binary multiplication. (6)
 - (d) Design and implement a 4-bit equality comparator using gates. (3)
- 3. (a) Illustrate the format of J-type instructions in MIPS machine language. (2)
 - (b) Write short notes on (i) MIPS register set (ii) Byte addressable memory. (7)
 - (c) Assuming that the opcode 'addi' is represented by 8_{10} , register'add' operation is represented by the function code 32_{10} , and the registers s_0 to s_7 are represented by 16_{10} to 23_{10} in MIPS machine language,
 - (i) Translate the following machine language code into MIPS assembly language: 0x2237FFF3 (3)
 - (ii) Translate the following MIPS assembly code to MIPS machine language code in hexadecimal form: add \$s0, \$s4, \$s5 (3)

PART B

Question No.4 is compulsory. Answer either Question No. 5 or Question No. 6.

4. (a) With examples for each, explain the addressing modes available in MIPS. (7.5)

	(b) What is micro architecture? List the state elements of MIPS processor and	their
	functions.	(5)
	(c) Write a short note on performance analysis of computer systems.	(2.5)
5.	(a) With an illustration, briefly explain MIPS memory map.	(5)
	(b) With a suitable diagram, explain the steps involved in executing a high	level
	language program.	(6)
	(c) With an example, briefly explain pseudo instructions in MIPS.	(4)
6.	(a) Differentiate between the three micro architectures for MIPS production	essor
	architecture.	(3)
	(b) Derive the simplified expression for cycle time in a single cycle MIPS proc	essor.
	If the cycle time in a single cycle processor is 1000 ps, compute the total exec	ution
	time (in seconds) for a program with 10 lakh instructions.	(7)
	(c) List the three main weaknesses of a single cycle processor. How are	they
	eliminated in a multi cycle processor?	(5)
	DADT C	
	PART C	
	Question No. 7 is compulsory. Answer either Question No. 8 or Question No. 9.	
7.	(a) With the help of a diagram, explain the concept of memory hierarchy.	(4)
	(b) Write short notes on (i) SCSI (ii) USB	(6)
	(c) With a diagram, explain address translation in virtual memory.	(7)
	(d) Differentiate between the two different write policies in cache memory.	(3)
8.	(a) Explain in detail, the different modes of data transfer between	the
	processor/memory and I/O devices in a computer system.	(10)
	(b) What is a port? Differentiate between serial and parallel ports.	(4)
	(c) With a circuit diagram, explain the working of a DRAM cell.	(6)
9.	(a) Briefly explain the concept of cache memory. What is hit rate?	(3)
	(b) Discuss in detail, any two mapping methods in cache memory.	(12)
	(c) Write short notes on (i) Replacement algorithms (ii) TLB	(5)
